12 United States Patent

Moniz et al.

US010133652B2

US 10,133,652 B2
*Nov. 20, 2018

(10) Patent No.:
45) Date of Patent:

(54) DEBUGGING OPTIMIZED CODE USING FAT
BINARY

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Michael J. Moniz, Ottawa (CA); Ali 1.
Sheikh, Sunnyvale, CA (US); Diana P.
Sutandie, Markham (CA); Srivatsan
Vijayakumar, Ottawa (CA); Ying Di
Zhang, Redwood City, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/705,317
(22) Filed: Sep. 15, 2017

(65) Prior Publication Data
US 2017/03717677 Al Dec. 28, 2017

Related U.S. Application Data
(63) Continuation of application No. 15/043,667, filed on

Feb. 15, 2016.
(51) Int. CL
GO6l 9/44 (2018.01)
GO6I’ 11/36 (2006.01)
(Continued)

(52) U.S. CL
CPC ... GO6F 11/3624 (2013.01); GO6F 8/41

(2013.01); GO6F 8/53 (2013.01)

(38) Field of Classification Search
CPC e, GO6F 11/3624

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

5,761,477 A * 6/1998 Wahbe GOO6F 11/3624
714/E11.211
6,151,618 A * 11/2000 Wahbe GOO6F 11/3624

714/E11.211
(Continued)

FOREIGN PATENT DOCUMENTS

9/2014
12/2014

JP 5589670 B2
JP 56306783 B2

OTHER PUBLICATTONS

Drinic et al, “*Code optimization for code compression” IEEE, pp.
315-324, 2003 .*

(Continued)

Primary Examiner — Aml Khatri
(74) Attorney, Agent, or Firm — Gilbert Harmon, Ir.

(57) ABSTRACT

Embodiments of the present invention provide a method,
computer program product, and system for debugging opti-
mized code. The system includes a FAT binary, wherein the
FAT binary comprises a non-optimized native code and an
internal representation of a program’s source code. An
optimus program 1s configured to transform the internal
representation of the program’s source code into a fully
optimized native code. The system also includes an
enhanced loader, wherein the enhanced loader 1s configured
to communicate with a debugger to determine a type of code

to load.

1 Claim, 3 Drawing Sheets

A L L L e .

‘NON-OPTIMIZED NATIVE
CODE 122

 FATBINARY

- e e e o

T T P L T LT L T T L TR L R A L, S A T P T L T LT T T T L T T P T
- owm om o - oo o o

A A Al R A A A

150
—— LOADER

OPTIMIZED NATIVE CODE
140

160
DEBUGGER

Lma =B BN BN BN O BN BN B B BN BN B BN R o bt e e bk o RS Y e Rt ke Tt G R el TRt ke TR A o e o AR TRl e b ke b el bt R

| J
1
1
1
1
3
1
3
1
i
1
!
1
!
3

US 10,133,652 B2
Page 2

(51) Int. CL
GO6F 8/41 (2018.01)
GO6F 8/53 (2018.01)
(58) Field of Classification Search
USPC ..o, 717/120-129, 140-141, 150-151
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
6,263,489 B1* 7/2001 Olsen GO6F 11/3628
714/E11.209
6,314,558 B1* 11/2001 Angel GO6F 11/3612
714/35
6,314,562 B1* 11/2001 Biggerstafl GO6F 9/451
717/156
6,405,364 B1* 6/2002 Bowman-Amuah GO6F 8/20
717/101
6,434,741 B1* 82002 Mirant GO6F 11/3628
714/E11.209
6,513,155 B1* 1/2003 Alexander GO6F 11/3409
717/124
6,536,037 B1* 3/2003 Guheen GO6F 8/71
703/2
6,553,565 B2 4/2003 Click, Jr. et al
6,560,774 B1* 5/2003 Gordon GO6F 9/44589
717/114
6,634,023 B1* 10/2003 Komatsu GO6F 8/445
717/124
6,658,471 B1* 12/2003 Berryc......... GO6F 11/3466
709/224
7,024,660 B2* 4/2006 Andrade GO6F 11/263
714/25
7,085,670 B2* 82006 Odom GO6F 9/4411
702/127
7,607,123 B2 10/2009 Chavan
7,823,129 B2* 10/2010 Dimpsey GO6F 11/3466
717/124
8,615,743 B2* 12/2013 Miller GO6F 11/3624
713/156
8,615,750 B1* 12/2013 Narayana Iyer GO6F 11/3624
709/203
8,683,453 B2* 3/2014 Patel GO6F 9/44521
717/139
8,762,964 B2* 6/2014 Turnerc....... GO6F 8/314
707/713

8,997,049 Bl 3/2015 Melnikov et al.
9,021,454 B2* 4/2015 Yohnooon.. GO6F 9/4552
712/226
9,058,483 B2* 6/2015 Chenccoovvvon. GO6F 21/577
9,940,218 B2* 4/2018 Moniz GO6F 11/3624
2011/0271259 A1l 11/2011 Moench et al.
2014/0289707 Al 9/2014 Guan et al.
2015/0378871 A1 12/2015 Asthana et al.

OTHER PUBLICATTIONS

Kamin et al, “Jumbo: Run-time Code Generation for Java and Its

Applications”, IEEE, pp. 48-56, 2003.*

Grimmer et al, “An Efficient Native Function Interface for Java”,
ACM, pp. 3544, 2013.*

Sulliva et al, “Dynamic Native Optimization of Interpreters” ACM,
50-57, 2003.*

Hsieh et al, “Java Bytecode to Native Code Translation: The
Caf’feine Prototype and Preliminary Results”, IEEE, pp. 90-97,
1996.*

Shi et al, “An Intermediate Language Level Optimization Frame-
work for Dynamic Binary Translation”, ACM, pp. 3-9, 2007 .*

Anand et al, “A Compiler-level Intermediate Representation based
Binary Analysis and Rewriting System”, ACM, pp. 295-308, 2013.*
Holzle et al., *“Debugging Optimized Code with Dynamic

Deoptimuzation”, ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, San Francisco, Jun. 1992,

pp. 1-12.

Jaramillo, “debugging optimized code”, Printed Dec. 9, 2015, 1
page, <http://people.cs.pitt.edu/~c1j/debug2 . html>.

Kedlaya et al., “Deoptimization for Dynamic Language JITs on
Typed, Stack-based Virtual Machines”, VEE 14, Mar. 1-2, 2014, 12
pages, © 2014 ACM, Salt Lake City, Utah, USA.

Seaton et al., “Debugging at Full Speed”, Dyla’14, Jun. 9-11, 2014,
13 pages, Copyright 2014 ACM, Edinburgh, United Kingdom.
Silvera et al., “Debugging Optimized Code With the Latest IBM XL
C/C++ and XL Fortran Compilers”, IBM Systems Magazine,
e-Newsletter Exclusive, Dec. 2012, 5 pages, <http://www.
ibmsystemsmag.com/CMSTemplates/IBMSystemsMag/Print.
aspx?path=/aix/tipstechniques/applicationdevelopment/
debug x1 compilers>.

“Appendix P: List of IBM Patents or Patent Applications Treated as
Related™, 2017, pp. 1-2.

U.S. Appl. No. 15/043,667, filed Feb. 15, 2016 Entitled “Debugging

Optimized Code Using FAT Binary”; 18 pages.

* cited by examiner

U.S. Patent Nov. 20, 2018 Sheet 1 of 3 US 10,133,652 B2

/100
110
COMPILER
120
> FAT BINARY
NON-OPTIMIZED NATIVE
CODE 122
WCODE 124
130 150
_ LOADER
OPTIMUS PROGRAM l

OPTIMIZED NATIVE CODE DEBUGGER
140

oo P
5

FIG. 1

U.S. Patent Nov. 20, 2018 Sheet 2 of 3 US 10,133,652 B2

200

z

202

IS DEBUGGER
ENABLED?

NO YES

204 206

LOAD OPTIMIZED LOAD NON-OPTIMIZED
NATIVE CODE NATIVE CODE

FIG. 2

o
) ¢ Ol
()
&
e
n (S)32IA3AQ
- TYNY3ILXS
1 .
N 0ZE
-
LINN SNOILVYOINNWINOD (S)3OV4HALNI Of AV 1dSId

s OLE ZLE AAS
&
ot
E
e
P,

<JKs & Z0¢E
m JHOVD
M, JOVHOLS
< IN31SISH3d
: EXE
7 80¢

JIE (S)40SS3IDN0Yd

AHYOW3IN
90¢

00¢

U.S. Patent
N\,

US 10,133,652 B2

1

DEBUGGING OPTIMIZED CODE USING FAT
BINARY

BACKGROUND OF THE INVENTION

The present mvention relates generally to the field of
static language debugging, and more particularly to using a
FAT binary to efliciently debug optimized code without the
need to rebuild the non-optimized version of the code.

In computing, an optimizing compiler 1s a compiler that
tries to minimize or maximize some attributes of an execut-
able computer program. In general, a computer program
may be optimized so that 1t executes more rapidly, or 1s
capable of operating with less memory storage or other
resources, or draws less power. Compiler optimization 1s
generally implemented using a sequence ol optimizing
transformations, 1.e., algorithms, which take a program and
transform 1t to produce a semantically equivalent output
program that uses fewer resources.

Debugging 1s the process of finding and resolving bugs or
defects that prevent correct operation of computer software
or a system. Debugging tends to be harder when various
subsystems are tightly coupled, as changes in one may cause
bugs to emerge 1 another. While writing an application, a
developer will recompile and test often, and so compilation
must be fast. Non-optimized code has a correlation between
source code and the object code which enables eflicient
source level debugging. However, the correlation 1s not
applicable for optimized code. Optimized code 1s rearranged
and modified during the optimization process, which makes
it difficult to perform source level debugging. This 1s one
reason most optimizations are deliberately avoided during
the test/debugging phase.

SUMMARY

As disclosed herein, a method for debugging optimize
code begins by receiving a source code of a program. The
method continues by generating a FAT binary containing a
binary and an intermediate code corresponding to the
received source code. The method continues by determining,
whether a debugger 1s enabled, and responsive to determin-
ing that a debugger 1s indeed enabled, loading the generated
FAT binary into a memory. A computer program product and
a computer system corresponding to the method are also
disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram illustrating a com-
puting device, 1n accordance with an embodiment of the
present ivention;

FIG. 2 1s a flowchart depicting operational steps for
determining the current work mode and loading the binary
that provides the best performance, 1n accordance with an
embodiment of the present invention; and

FIG. 3 1s a block diagram of internal and external com-
ponents of a computer system, in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

Debugging optimized code 1s a challenging dilemma in
soltware development. Non-optimized code has a correla-
tion between source code and the object code which enables
source level debugging. However, the correlation 1s not
applicable for optimized code. Optimized code 1s rearranged

10

15

20

25

30

35

40

45

50

55

60

65

2

and modified during the optimization process, which makes
it diflicult to perform source level debugging. As a conse-
quence, developers are left with two options. First, for
cilicient debugging, the code can be maintained 1n non-
optimized form. Second, 1f performance 1s a critical part of
the program, the program can be compiled with optimization
enabled, but will result in decreased debugging productivity.
Furthermore, 11 optimization 1s enabled, developers need to
recompile their code with non-optimized settings to enable
source-level debugging. Embodiments of the present inven-
tion provide systems and methods for loading the proper
binary based on the current compiler phase, which allows a
developer to have an optimized program without being
required to rebuild the non-optimized version of the code for
the purpose of debugging.

The present invention will now be described 1n detail with
reference to the figures. FIG. 1 15 a functional block diagram
illustrating a computing device 100, 1n accordance with one
embodiment of the present invention. FIG. 1 provides only
an illustration of one implementation, and does not 1mply
any limitations with regard to the environments in which
different embodiments may be implemented. Many modifi-
cations to the depicted environment may be made by those
skilled 1n the art without departing from the scope of the
invention as recited by the claims. In an exemplary embodi-
ment, computing device 100 includes compiler 110, FAT
binary 120, optimus program 130, optimized native code
140, loader 150, and debugger 160.

Compiler 110 1s a computer program that transforms
source language written 1n a programming language (source
code) mnto another computer language (object code). Devel-
opers compile a program normally 1n compiler 110. Com-
piler 110 produces FAT binary 120.

FAT binary 120 1s a computer executable program which
has been expanded with code native to multiple mstruction
sets which can consequently be run on multiple processor
types. In this exemplary embodiment, FAT binary 120
enables machine-level optimization, which increases the
performance of a program. FAT binary 120 decreases turn-
around time when there 1s an 1ssue, or bug, because the
developer already has access to a non-optimized version of
the code. FAT binary 120 includes a binary, non-optimized
native code 122, and an intermediate representation of the
program, WCODE 124. Non-optimized native code 122 1s
executable object code, produced by compiler 110 from a
developer-written source code. WCODE 124 1s a smaller
and obfuscated internal representation of the program’s
source code. WCODE 124 contains all the semantic ifor-
mation of the source code such that a user can perform
optimizations on it as 1f 1t were freshly compiled. It should
be appreciated that in this exemplary embodiment, WCODE
124 1s created for a single processor architecture.

Optimus program 130 1s software capable of transforming,
obfuscated source code into a fully automated native code.
Optimus program 130 takes advantage of machine architec-
ture to produce the maximum level of optimization. Optimus
program 130 uses WCODE 124 to produce optimized native
code 140. Loader 150 loads optimized native code 140 into
memory (not depicted i FIG. 1) during live production
mode (1.e., operational mode). During debugging mode,
loader 150 loads non-optimized native code 122 directly into
memory.

Loader 150 places programs into memory and prepares
them for execution. Loader 150 1s responsible for loading
the executable contents of FAT binary 120 into memory and
preparing the executable contents to be run. In this exem-
plary embodiment, loader 150 accesses non-optimized

US 10,133,652 B2

3

native code 122 and WCODE 124 in FAT binary 120.
Loader 150 communicates with debugger 160 to determine
which binary to load: either non-optimized native code 122
from FAT binary 120 or optimized native code 140. In this
exemplary embodiment, loader 150 loads optimized native
code 140 1into memory during live production mode. Opti-
mized native code 140 1s a tully optimized native code that
1s tuned for the machine architecture. It should be appreci-
ated that 1n debugging mode, loader 150 loads non-opti-
mized native code 122 into memory for use by debugger 160
during debugging.

Debugger 160 1s a computer program that allows a
program to execute and nspects each step during execution
(e.g., GNU Debugger). When debugger 160 1s enabled,
loader 150 will load non-optimized native code 122 1nto the
memory. In one example, a debugging tlag can be turned on
when debugger 160 1s enabled to communicate to loader 150
of the current debugging mode.

FI1G. 2 1s a flowchart, 200, depicting operational steps for
determining the current work mode and loading the binary
that provides the best performance, 1n accordance with an
embodiment of the present invention.

In step 202, loader 150 determines if the user 1s debugging
the program. In this exemplary embodiment, loader 1350
communicates with debugger 160 to determine 11 debugging
mode 1s enabled. In one example, when debugger 160 1s on,
a flag 1s added to tell loader 150 that the debugging mode 1s
enabled. It should be appreciated that the current work mode
can either be debugging mode or live production mode.
Loader 150 determines the current work mode and auto-
matically loads the applicable version of the code.

If, 1n step 202, loader 150 determines that debugger 160
1s not 1 debugging mode (i.e., 1t 1s 1n live production mode),
then 1n step 204, loader 150 loads optimized native code 140
into memory. It should be appreciated that optimus program
130 produces optimized native code 140 from WCODE 124.

If, 1 step 202, loader 150 determines that debugger 160
1s 1n debugging mode, then 1n step 206 loader 150 retrieves
non-optimized native code 122 from FAT binary 120.
Loader 150 loads non-optimized native code 122 into
memory for use by debugger 160 during the debugging
process.

Accordingly, by performing the operational steps of FIG.
2, a developer can build a code with optimization turned on,
without the need to rebuild the code without optimization for
debugging purposes. By using a FAT binary, loader 150 can
automatically load a non-optimized native code during the
debugging process, so that the code does not need to be
rebuilt for debugging purposes. This mvention creates the
option for developers to access the non-optimized native
code for debugging that i1s stored within the release version
of a program.

FIG. 3 1s a block diagram of internal and external com-
ponents of computing device 300, which 1s representative of
the computing device of FIG. 1, 1in accordance with an
embodiment of the present invention. It should be appreci-
ated that FIG. 3 provides only an illustration of one imple-
mentation and does not imply any limitations with regard to
the environments in which different embodiments may be
implemented. In general, the components illustrated 1n FIG.
3 are representative of any electronic device capable of
executing machine-readable program instructions.
Examples ol computer systems, environments, and/or con-
figurations that may be represented by the components
illustrated 1n FIG. 3 include, but are not limited to, personal
computer systems, server computer systems, thin clients,
thick clients, laptop computer systems, tablet computer

10

15

20

25

30

35

40

45

50

55

60

65

4

systems, cellular telephones (1.e., smart phones), multipro-
cessor systems, microprocessor-based systems, network
PCs, minicomputer systems, mainirame computer systems,
and distributed cloud computing environments that include
any of the above systems or devices.

Computing device 300 includes communications fabric
302, which provides for communications between one or
more processing units 304, memory 306, persistent storage
308, communications unit 310, and one or more 1nput/output
(I/0) interfaces 312. Communications fabric 302 can be
implemented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, com-
munications fabric 302 can be implemented with one or
more buses.

Memory 306 and persistent storage 308 are computer
readable storage media. In this embodiment, memory 306
includes random access memory (RAM) 316 and cache
memory 318. In general, memory 306 can include any
suitable volatile or non-volatile computer readable storage
media. Software 1s stored in persistent storage 308 for
execution and/or access by one or more of the respective
processors 304 via one or more memories of memory 306.

Persistent storage 308 may include, for example, a plu-
rality of magnetic hard disk drives. Alternatively, or in
addition to magnetic hard disk drives, persistent storage 308
can 1nclude one or more solid state hard drives, semicon-
ductor storage devices, read-only memories (ROM), eras-
able programmable read-only memories (EPROM), flash
memories, or any other computer readable storage media
that 1s capable of storing program instructions or digital
information.

The media used by persistent storage 308 can also be
removable. For example, a removable hard drive can be used
for persistent storage 308. Other examples include optical
and magnetic disks, thumb drives, and smart cards that are
inserted mto a drive for transtfer onto another computer
readable storage medium that 1s also part of persistent
storage 308.

Communications unit 310 provides for communications
with other computer systems or devices via a network. In
this exemplary embodiment, communications unit 310
includes network adapters or interfaces such as a TCP/IP
adapter cards, wireless Wi-F1 interface cards, or 3G or 4G
wireless 1nterface cards or other wired or wireless commu-
nications links. The network can comprise, for example,
copper wires, optical fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers.
Software and data used to practice embodiments of the
present mvention can be downloaded to computing device
300 through commumnications unit 310 (1.e., via the Internet,
a local area network, or other wide area network). From
communications unit 310, the software and data can be
loaded onto persistent storage 308.

One or more I/O interfaces 312 allow for input and output
of data with other devices that may be connected to com-
puting device 300. For example, I/O interface 312 can
provide a connection to one or more external devices 320
such as a keyboard, computer mouse, touch screen, virtual
keyboard, touch pad, pointing device, or other human inter-
face devices. External devices 320 can also include portable
computer readable storage media such as, for example,
thumb drives, portable optical or magnetic disks, and
memory cards. I/O interface 312 also connects to display

322.

US 10,133,652 B2

S

Display 322 provides a mechanism to display data to a
user and can be, for example, a computer monitor. Display
322 can also be an mcorporated display and may function as
a touch screen, such as a built-in display of a tablet com-
puter.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine i1nstructions, machine dependent instructions,
microcode, firmware istructions, state-setting data, or
either source code or object code written 1n any combination
ol one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of

10

15

20

25

30

35

40

45

50

55

60

65

6

network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations ol systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of

US 10,133,652 B2

7

illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies
found i the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed

herein.

What 1s claimed 1s:
1. A method for debugging optimized code, the method
comprising the steps of:

in response to receiving a source code ol a program,
generating, by one or more processors, a FAT binary,
wherein the FAT binary contains a binary and an
intermediate code;

determining, by one or more computer processors,
whether a debugger 1s enabled;

in response to determining that the debugger i1s not
enabled, passing, by one or more computer processors,
the intermediate code to a program;

10

15

20

8

1n response to passing, by one or more computer proces-
sors, the intermediate code to the program, generating,
by the program, an optimized native code;
in response to generating an optimized native code, load-
ing, by one or more computer processors, the generated
optimized native code; and
wherein:
the binary 1s a non-optimized native code for a single
processor architecture;
the intermediate code 1s an internal representation of
the source code, and contains all semantic informa-
tion of the source code, thereby enabling a user to
perform optimizations on the mtermediate code;
loading the generated binary into a memory 1s based on
a determination of an enhanced loader whether to
load a non-optimized native code or an optimized
native code;
the optimized native code 1s optimized source code for
a single processor architecture; and
the program transforms the intermediate code into the
optimized native code.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

